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Abstract: This paper defines and investigates a funda- 
mental problem of determining the position and orienta- 
tion of a 3 0  object using $ingle perspective i m g e  view. 
The technique is  based on the interpretation of trihedral 
angle constraid informution. A new closed form solution 
io the problem is proposed. The method also provides a 
general analytic technique for dealing with a class of 
problem of shape from inverse perspective projection by 
using "Angle to Angle Correspondence Information ". 
Simulation experiments show that our method is enective 
and robust for real application. 
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1. Introduction 

Shape from inverse perspective projection is an essen- 
tial method for model-based 3D reconstruction. There are 
many applications of this approach in Robotics, Cartogra- 
phy and Computer Vision [8-131. 

The formal definition of shape from inverse perspec- 
tive projection can be stated as follows : Let perspective 
projection be the ideal model of a camera, then the cam- 
era imaging process is given by 

where, P' = ( n, y ,  z )* is the description of a 3D point in 
an object coordinate system and 9 = (U, v ) ~  is the 2D pro- 
jection of P' on the image plane; rotation R and translation 
f form the transformation from the object coordinate sys- 
tem to the camera coordinate system; matrix K describes 
the intrinsic parameters of the camera. The problem of 
shape from inverse perspective projection is to determine 
the unknown rotation matrix R and the translation f from 

certain 3D geometric features of the object and their 2D 
image geometric features in a single perspective view. 
Three types of situations are mostly discussed in the 

problem of shape from inverse perspective projection : 
1. Perspective ' point to point correspondence problem. 
This problem is usually called PnP problem [8], when n 
pairs of corresponding points are known. 

2. Perspective line to line correspondence problem. Like 
the case in the above, we call the problem as LnL, prob- 
lem, when n pairs of corresponding lines are specified. 

3. Perspective angle to angle correspondence problem. We 
name this problem as AnA problem if n pairs of corre- 
sponding angles are given. 

A closed form solution is the most desirable result for 
each of PnP, LnL and AnA problems for its simplicity, 
stability and speed. In this paper, a closed form solution 
is presented for the general problem of uihedral angle 
constraint, which is an A3A problem. 

In recent years, trihedral angle constraint has been ad- 
dressed by many authors from different viewpoints. The 
relevant work can be divided into the following two cate- 
gories : 

(a) Direct approach : In this category, angle informa- 
tion is employed directly. b a d e  [6] proposes an analytic 
solution for the problem under orthographic projection. 
For perspective projection, algebraic solutions have been 
given by Kanatani 131, Shakunaga and Kaneko [5] for 
special cases when two or three space angles are right an- 
gles; in addition, some constructive algorithms are sug- 
gested by EIoraud [7], Shakunaga and Kaneko [SI for 
solving the general problem . 
(b) Indirect approach : Without using angles directly, 
the configuration of a trihedral angle can also be specified 
by four space points or by a junction of three 3D lines. In 
this sense, we can consider triheciral angle constraint as a 
special case of the P4P or L3L problem. Therefor, the 
methods for solving these two types of problems can be 
applied for trihedral angle constraint ( [ 111, [ 121 ). 
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Our new solution for trihedral angle constraint uses the 
direct approach. This method can be considered as a com- 
plete closed form solution for the general AnA problems 
in a minimal condition. The significant advantage of our 
approach over the methods of P4P [Ill and L3L 1121 is 
that the angle measure is independent of the coordinate 
system but the description of a point or a line varies when 
the related coordinate system is changed. 

2. A new mathematical framework 

2.1. Preliminary formulation $32*i?3= sin72sin73 C O S ( P ~ - P ~ ) + C O S ~ ~ C O S ~ ~ =  COS ~ 2 3  

2.1.1 Canonical image structure 

are given. Then, we can derive from (1) that 

When the angles q12, ~13,and 723  are given, we have a 
system of three equations with three unknowns. So we 
expect to solve 71, 72, 73 and then to determine the orien- 
tation of the trihedral angle in camera coordinate system. 

Kanatani 131 first suggested the formulation for angle 
constraint and proposed a solution of (5) for the special 
case where at least two of q12. q13,and ~ ~ 2 3  are right an- 
gles. we Will now present a Complete Solution for ( 5 ) .  

2.2. Analytical solution for trihedral angle con- 
straint 
23.1 Estimate the orientation 

Our idea for solving ( 5 )  is straightforward. First, assume 
that 2, can be expressed by 2, and fi2 as 

We have 

Assume that the intrinsic matrix Of a 

[+-I [?I-( K T  I[;] (2) 

where $ is determined only by the extrinsic parameters 
of rotation K and translation f .  We call 8 as canonical 
Image and will consider only this representation in Lhe 
followmg discussions for the development of our method. 

2.1.2 View orientation transformation 

We define a view orientation transformation as a pure 
rotation upon a camera coordinate system. Because the 
corresponding relationship between the image points UII- 

der such a uansformation is uniquely determined, we can 

$3 = U $ ,  + bZ2 + ~ $ 1  x $2 (6) 

- + - +  use this relation for facilitating the problem formulation 
of trihedral constraint [31. 

N1*N3 = U + b COS 712 = COS ~ 1 3  

N2*N3 = U COS ~ 1 2  + b = COS 7 2 3  

N3*N3 = U COS 913  + b COS q23  + c2 sin2 q12 = 1 
(7) 

+ - +  

+ +  Among the infinite view orientation uansformations 
which can transform the view axis of a camera coordinate 
system from an old orientation to a new one, we consider 
the onc which is formed by a rotation around the y-axis of 

era. L,et a new view orientation be specified by an image 
p in t  (U, v ) ~ ,  then the rotation matrix is as below : 

Then, the coefficients a, b and c can be derived 

a = ( cos qI3  - cos q12 cos ~ 2 3 )  t sin2 7lI2 
b = ( cos ~ 2 3  - cos q 1 2  cos 913) t sin q12 

c = k l /  ( I - a cos ~ 1 3  - b cos ~ 2 3 )  t sin2 ql;‘ 

camera, followed by a rotation around the x-axis of cam- 2 (8) 

(3 )  

2.1.3 ‘fiihedral angle constraint formulation 

Let a trihedral angle be formed by si = ( x i ,  y i ,  zJT. 
i = 0, . . , 3  with $0 as the angular point, and di  = ( u ; , v ~ ) ~  
be the perspective projection of gi. without loss of gener- 
ality, assume that iio is on the view axis. Let pi be tlie an- 
gle formed by ai and the U-axis; zi=si-?o and be the 
unit direction vector along ti; and 7i be the angle formed 

By the values of a, b and c. we can rewrite (8) to get 
a sin 71 cos p1 + b sin y2 cos 8 2  

cos P3 
 sin yl sin p1 cos 72 - sin 72 sin p2 cos yll 

cos 8 3  
a sin 71 sin PI + b sin yz sin p2 

sin p3 
 sin 72 cos p2 cos 71 - sin 71 cos P1 cos 72) 

sin 8 3  

sin73 = 

+ 

(9) sin 73 = 

+ 
COS 73 = U COS 71 + b COS 72 + c sin 71 sin 72siQ2 - 

Without loss of generality, suppose cos(p1-P2)+0. Then, 

262 



Substituting (14) into the second equation of (ll), we get 
5 

id 
si cosi 71 = 0 

Where, 

~5 = C2A;” + E2C;” - B2:AlCI 
~4 = A2Ai + Fz Ct  - B2,AI B1- 82 D1 C1 

- DZAlCl+ 2CzAl D1+ 2E2ClBl 
~3 = 2AzAIDl-  D2AliB1- D2C1D1+ 2EzClE1 

+ 2C2Al F,  + C2Di - BzAIE, - B ~ C I  F1 

~2 = 2A2Al F1+ A2@ - D2A1 El - D2 F1 Cl 
- B2Dl B1 + 2F2C1.B1 + E2Bi 

- D2D,E1  + 2F2C1 El + F2B: + 2C2D1 F1 

(16) 

- B2DlEl-  B2B1 F 1 +  2E2B1 El 
S I  = 2A2D1 F1- D2Dl El - D2F1 Bl + 2F2BIEi 

+ C2F;”- B2FlEl  +. E2E;” 
SO = A2 F;” + Fz Et  - Dz FIE1 

By (151, (14) and the third equality of (9). we can solve 
cos 71, cos 7 2  and cos y3 step by step. Then, a trihedral 
angle can be determined in camera coordinate system by : 

Pi = Po+ liNj ( i =  1,2,3) (17) 
where, l i  > 0 is the length of zi. Because so far only the 
three unit vectors 13; can be assigned by solving (3, we 
obtain only the orientation of a trihedral angle. To find its 

- + +  -+ 

full position, more information is necessary. 

23.2 Determine the full position of a trihedral angle 

Let a trihedral angle in an object frame be given by 

i;: = & + lii$ (i = I, 2,3) (18) 
Where, the corresponding relationship between (17) and 
(18) is specified by gi to 8. si to $ and Zi= 1;. We can 
obtain the rotation R by the relation s i=R$.  To find the 
translation f=(tx,fY,fJT, let g and j3 be a pair of matched 
object point and image point, R = (rG)3x3, we have 

(19) 

If two pairs of matched points are available, the transla- 
tion f can be obtained by solving (19). It follows that to 
get a full solution for trihedral angle constraint, we still 
need two pairs of matched object point and image point. 

Alternatively, if one of length l i  in (17) is known, the 
go can be simply determined by each of the following 
two equations, provided the denominator is not zero. 

r l l x  + r12y+ r13z + I, - U ( T ~ ~ X  + r32y + r33z + t , )  = 0 
r21 x + r, y + rpz + t ,  - v( r31 x + r3,y + r 3 3 ~  + 1,) = 0 

(20 1) (20) 
20 = l i ( S i t I 7 j  cos pi - U, cos 71) I ui 
zo = li(sin7i sin pi - vi cos x) I vi 

Then the trihedral angle is completely determined in cam- 
era frame but does involve any object coordinate system. 

23.3 The algorithm 

The solution procedure for shape from trihedral angle 
constraint is summarized as follows : 

Prerequisite : Suppose that the intrinsic parameters of the 
camera are given; then a 2D trihedral configuration is 
picked and the Corresponding 3D angles are specified. 

Step 1. Use (2)  to get the canonical representation for the 
image features. 

Step 2. Use the angular vertex of the 2D tnhedral config- 
uration to compute the matrix R (3); then, convert the 
original image features to their new coordinates. 

Step 3. Match the 2D vs. 3D angles and determine the 
constraint equation system (5). 

Step 4. Derive the fifth-order equation (15) and solve it 
to get cos 71 ; if there is no solution, go to step 8. 

Step 5. Calculate cos 7 2  by (14); if there is no solution, 
go to step 8. 

Step 6. Calculate cos y3 by the third equality of (9); if 
there is no solution, go to step 8; 

Step 7. Check the solution against the original constraint 
equation system (5). 
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Constraint 
Relation 

I 1  I II 11 Linear I n 2 6  I P4P1111 II 
Linear Closed Form 

Solution Solution 

)I Pi'p 
. .  

P3P [9] 1 -  Nonlinear No 

In this table, we divide the problems of PnP, LnL and 
AnA into two categories of linear and nonlinear con- 
straints. The difference between the two categories is that 
the 3D features are defined in an object coordinate system 
for linear constraint, but they are given by a group of 
scalars for nonlinear constraint. LnL constraint belongs 
to linear category because it is necessary to refer to some 
object coordinate system for specifying a 3D line. Con- 
trarilv, AnA constraint is in nonlinear category because 
only n scalars are needed for specifying n spatial angles. 

LnL 
AIIA 

An intersting fact is that PnP can be presented in both cat- 
egories when n > 1 [ 8,9,11]. 

In mathematics, a linear formulation for the problem 
LnL or PnP may be changed to some nonlinear format of 
AnA or PnP. But we can not change a nonlinear formula- 
tion for the problem of AnA or PnP to some linear format 
of LnL. or PnP because the nonlinear formulation is inde- 
pendent to object frame. So the nonlinear formulation 
may be more powerful than the linear formulation for cer- 
tain applications. 

3 3  Special configuration Cases 
Some special configurations about trihedral angle con- 

straint described below are commonly encountered in real 
applications. For these cases, The general fifth order 
equation (15) can be simplified to lower order to facilitate 
the solving procedures. 

(a) Coplanar configuration 

a plane, equation ( 15) becomes 
In this case, the three vectors fil, 6'. Z3 are located on 

s4 cos4 71 + s2 cos' yl + so = 0 

This is actually a quadratic equation on cos' yl 

(b) The configuration with two or three right angles 
In the case that there are at least two right angles in a 

trihedral angle, we can let $3 be normal to $1 and $2. 

Then, (15) can be rewritten as 

s5 cos4 71 + s3 cos' yl + s1 = o 
As in case (a), we obtain a quadratic equation on cos' 71. 

(c) Special image configurations 
If one 2D right angle exists, say pI-p2=nf2, we have 

A,=Ei=O (i=1,2) in (12) and (13), so (15) becomes a cubic 

s4 cos3 71 + s3 cos2 yl + s2 cos yl + sI = 0 
If pl-p2=r, we have C1=C2= 0 in (12) and (13), so (15) 
becomes a quadrinomial as 

s4 cos4 71 + s3 cos3 71 + s2 cos2 71 + s1 cos yl + so = o 
4. Experimental validation 
4.1 Experimental design 

Regarding the perf0r"ance of the new approach, we 
are mainly concerned about its effects on the following 
three aspects : 
1. Subject to the following three inherent criteria : 

C-1 : Each solution obtained by (15), ( 14) and (9) must 
bein[-1, I ] .  
C-2 : Each group of solutions should satisfy the primi- 
tive equation system (5) .  

Linear n 2 8 L3L r12.131 
Nonlinear No A3A.ThisPaper 
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C-3 : if  additional information about the 3D length of 
the side of a trihedral angle is available, the solution of 
(20) should be bigger than 1. 

we will investigate how many solutions can occur for an 
arbitrary trihedral angle cc4nstraint and whether the true 
solution is obtainable by our method. 
2. We should inspect when a correctly matched trihedral 
angle constraint is derived, if the real solution is obtained 
by our method; or when an ill-matched trihedral angle 
constraint is presented, whether our method can identify 
the ill-condition. 
3. Our next task is to study the presented approach for its 
sensitivity to noise. 

To test the three questions in general, we arranged our 
experimental procedure as fi~llows : 
Data-1 : Randomly generate a set of ideal trihedral angle 
constraints in a camera coordinate system. 
Test-1 : Use correct angle matching relationship on the 
ideal data to solve a trihedrill angle constraint and then to 
investigate the solution pattem. 
Test-2 : Use incorrect angle matching relationship on the 
ideal data to solve a trihedral angle constraint and then to 
check the solution results. 
Data-2 : For a trihedral angle constraint, the net effects of 
noises can be simply considered as a noise acted on the 
PI, pz and p3 of (5). We choose an interval I. -m, m ] as 
the source of noise. Then, a noise triplet is randomly gen- 
erated from the noise interval and the trihedral angle con- 
straint generated b Data-1 is added on the noise triplet to 
produce a noised &a. 

Table 4-1 The Solution Distribution of Equation (15) 

Number of Solutions 
Frequency 

~~~~1 
Data FnorMatch 0 11 65 24 0 0 

Table 4-2 The Reserved Solution Distribution 

Test-3 : Do Test-1 for Data-2. 
Test-4 : Do Test-2 for Data-2. 
The test results are given in the following paragraphs. 

4.2 The solution distribution and patterns 
According to the procedure depicted in 4.1, 100 groups 

of data are generated and the tested results are shown in 
the Table 4-1 and Table 4-2. In the tables, an entry repre- 
sents the emerging frequency of the case specified by the 
corresponding row title and column title. For example, the 
entry 48 in the first row and the third column of Table 4-1 
means that, when using a randomly generated ideal trihe- 
dral angle constraint and supposing that the correct match 
is employed, we got 48 times of the 2-solution cases in 
the 100 experiments. 

By table 4-1, we see that the equation (15) usually has 
some solutions in the interval [ -1, 1 J no matter what 
experimental condition is assumed. But there is no signif- 
icant difference to distinguish the ideal data from noised 
data or distinguish the correct match from error match by 
just referring to the solutions of (15). 

When imposing the criteria C-1, C-2 and C-3 for the 
fonnal solutions of (15). (14) and (9). Table 4-2 shows 
that the reserved solutions have a very different distribu- 
tion compared to Table 4-1 ( where we identify a pair of 
mirror solutions as one solution ). This time, we see that 
the overwhelming majority of the error matched trihedral 
angle constraints have no solution. So they can be effec- 
tively identified by our method. For each correctly 
matched case, we always find that true solution is 
included for ideal data and an approximate solution for 
the m e  value exists for noised da& and most correctly 
matched cases have just one or two reserved solutions. 
More details about the experiments are presented in [14]. 

4.3 Noise sensitivity analysis 
For a trihedral angle constraint (3, the net effect of 

noise can be represented by a disturbance on the 2D 
angles pi, i=l, 2, 3. Denote ai as the noised pi; let Y, and 
f i  be the correct solution of (5) corresponding to pi and ai. Then, we consider the covariant relationships for the 
corresponding pairs ( Afi, APi ) and ( A, f i  1 by following 
two linear regression models : 

AY, = ai0 + ailAPi + ~i 

f i  = ai0 + U i l y ,  + Ei 

where, Afi = Ti - y,, Api = $i - pi, ( i = 1,2,3 ) . 

(i = 1,2,3) 
Our intention is to test the statistical hypotheses : 

Ho: ail = 0 Ho: a:, = 0 
by using the analysis of variance (ANOVA) tn check the 
data fitness for the linear regression models. According 
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to the above procedure, the synthetic test data were gener- 
ated for regression analysis; where, the noises were se- 
lected from the noise interval [-5",5"]; and for multiple 
solution cases, we chose the best approximation to the 
correct value yi as A. 

The results of the regression analysis are presented by 
Table 4-3 ( refer [14] for more details ). We see that there 
is no definite relationship between Ayi and ASi; but very 
strong linear relationship exist between yi and A. There- 
fore, we can conclude that the solution of our method for 
trihedral angle constraint is stable under a noisy environ- 
ment So the method is robust in real application situa- 
tions 

Models 

Ayl = alo + allApl 
Ay2 = a20 + azlAp2 
Ay3 = a30 + a31Ap3 

Tl = a;,-, + u;171 
f2  = aio + uil  y2 
f 3  = a&, + a31 y3 

P-value Acceptance 
0.1910 Accept 
0.4728 Accept 
0.9821 Accept 
O.OOO1 Reject 
O.OOO1 Reject 
O.OOO1 Reject 

5. Conclusion 
Methods for solving the orientation and position of an 

object from a single perspective projection view are 
important for their wide applications and powers. The 
method presented in this paper permits us to find an 
analytic solution of a trihedral angle constraint by 
directly using angle information. Angle is a very com- 
mon feature for characterizing a variety of objects. The 
knowledge about the angles of an object provides a strong 
clue for estimating the orientation and position of the 
object. Our method gives the first closed form solution 
for the problem of trihedral angle constraint in perspective 
projection. Trihedral angle is the simplest but also the 
most encountered angle constraint in 3D computer vision. 
This method also provides a basic approach for dealing 
with the general AnA problems, provided that the number 
of constraint equations on AnA problem is greater than or 
equal to the number of unknowns. The results of simula- 
tion experiments show that the new method is not only a 
real time technique of shape from angle constraint, but 
also powerful enough to cope with noisy environments in 
real applications. With the new developments, we present 
a general analysis on the essential characteristics of PnP, 
LnL and AnA techniques. The combination of the three 
techniques certainly is a very promising tool to deal with 
varitns situations of shape from inverse perspective pro- 
jection. To design a sound algorithm for this unified 
approach is a topic for our further research. 

References 

[l] R. M. Haralick, "Monocular Vision Using Inverse Perspec- 
tive Projection Geometry : Analytic Relations", Prcc. IEEE 

[2] P.G. Mulgaonkar, L.G. Shapiro and R.M. Haralick., "Shape 
from Perspective : A Rule Based Approach" CVGDP Vo1.36, 

[3] K. Kanatani, "Constraints on Length and Angle", CVGIP, 
Vo1.41. pp.28-42, 1988. 

(41 S. T. Bamard, "Choosing a basis for perceptual space", 

C o d .  00 CVPR, pp.370-378, 1989 

pp.298-320, 1989 

CVGIP, V01.29, pp.87-99, 1985. 

[ 5 ]  T. Shakunaga and H. Kaneko, " Shape from Angles 
Under Perspective Projection", Proc. IEEE 2nd Int. Conf. on 

[6] T. Kanade, "Recovery of the Three Dimensional Shape of 
an Object from a SingleView", AI-17, pp.409-460, 1981. 

[7] R. Horaud, "New Method for Matching 3-D Object with 
Single Perspective Views", IEEE Trans. on PAMI, Vo1.9, 
No.3, pp.401-412, 1987. 

[8] M.A. Fischler and R.C. Bolles, "Random Sample Consen- 
sus : A Paradigm for Model Fitting with Application to Image 
Analysis and Automated Cartography", Communication of 
ACM., Vo1.24, No.6, pp.381-395, 1981. 

[9] S. Linnainma, D. Harwood and L.S. Davis, "Pose Determi- 
nation of a Three-Dimensional Object Using Triangle Pairs", 
IEEE Trans. on PAMI Vol.PAM1-IO, No.5, pp.634-646, 1988. 

[ 101 D.G. Lowe, "Three-Dimensional Object Recognilion from 
Single Two-Dimensional Image", AI-3 1, pp.355-395, 1987. 

[ l l ]  R. Horaud, B. Coni0 and 0. Leboulleux, "An analytic solu- 
tion for the perspective 4-point problem". CVGIF', Vo1.47, 
pp.33-44, 1989. 

[12] M. Dhome, M. Richetin, J-T. Lapreste and G. Rives, 
"Determination of the Attitude of 3D Objects from a Single Per- 
spective View", IEEE Trans. on PAMI, Vol.11, pp.1265-1278, 
1989 

[13] Homer H. Chen, "Pose Determination from Line-to- 
Plane Correspondences : Existence Condition and Closed-Form 
Solution", Proc. IEEE 3rd Int. Conference on CV, pp.374-378. 
1990 

[ 141 Yuyan Wu, S .  Sitharama Iyengar, Ramesh Jain and Santanu 
Bose, "A New Method Of Finding Object Orientation Using 
Perspective Trihedral Angle Conshaint", Research Report, 
Robotics Research Laboratory, Department of Computer Sci- 
ence, Louisiana State University, Baton Rouge, 1992. 

CV, pp.671-678, 1988. 

266 


